JOM 23139PC

Preliminary Communication

Synthesis of bridged and linked ruthenium and osmium carbonyl clusters containing a $[Au_2(Ph_2PCH_2CH_2PPh_2)]^{2+}$ unit. The crystal and molecular structures of $Ru_5C(CO)_{14}Au_2(Ph_2PCH_2CH_2PPh_2)$ and $\{Os_4H_3(CO)_{12}\}_2Au_2(Ph_2PCH_2CH_2PPh_2)$

Angelo J. Amoroso, Andrew J. Edwards, Brian F.G. Johnson, Jack Lewis, Muna R. Al-Mandhary, Paul R. Raithby, Vijay P. Saharan and Wing Tak Wong

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (UK)

(Received July 13, 1992)

Abstract

Treatment of Au₂(Ph₂PCH₂CH₂PPh₂)Cl₂ with one equivalent of the [Ru₅C(CO)₁₄]²⁻ dianion in the presence of TIPF₆ gives Ru₅C(CO)₁₄Au₂(Ph₂PCH₂CH₂PPh₂) (1) in good yield and the [{Ru₅C(CO)₁₄}Au₂(Ph₂PCH₂CH₂PPh₂)]²⁻ (2) anion in low yield. Complex 2 becomes the major product if 2 equivalents of [Ru₅C(CO)₁₄]²⁻ are used. Reaction of [Au₂(Ph₂PCH₂ CH₂PPh₂)Cl₂] with 3 equivalents of [H₃Os₄(CO)₁₂]⁻ anion in the presence of TIPF₆ affords {H₃Os₄(CO)₁₂}Au₂(Ph₂PCH₂CH₂PPh₂) (3) in reasonable yield. X-ray diffraction studies of 1 and 3 show that they contain the [Au₂(Ph₂PCH₂CH₂PPh₂)]²⁺ fragment in different coordination modes.

The use of Group IB metal fragments for the metathetical formation of metal-metal bonds with anionic metal carbonyl clusters is well known [1]. However, the use of bimetallic cationic fragments, containing bidentate phosphine groups, such as $[Au_2(Ph_2PCH_2CH_2-PPh_2)]^{2+}$, has been limited to a few cases in which both Au atoms are bonded to the same ruthenium or osmium cluster anion [2-4]. We decided to expand these studies in order to investigate the possibility of linking carbonyl cluster anions with this bidentate cation as a method of generating higher nuclearity cluster complexes, and we now report some preliminary results of these investigations. From the reactions of $Au_2(Ph_2PCH_2CH_2PPh_2)Cl_2$ with the anions $[Ru_5C(CO)_{14}]^{2-}$ and $[Os_4H_3(CO)_{12}]^-$ three complexes exhibiting two different coordination modes of the digold unit have been characterised: (i) a digold-pentaruthenium carbido cluster with a $[Au_2(Ph_2PCH_2 CH_2PPh_2)]^{2+}$ unit bonded to one cluster anion via both Au atoms; (ii) a digold-decaruthenium cluster anion; and (iii) a digold-octaosmium cluster containing two monogold-tetraosmium units linked together via the $[Au_2(Ph_2PCH_2CH_2PPh_2)]^{2+}$ unit.

Treatment of a dichloromethane solution of the salt $[N(PPh_3)_2]_2[Ru_5C(CO)_{14}]$ with one equivalent of $Au_2(Ph_2PCH_2CH_2PPh_2)Cl_2$ in the presence of an excess of TIPF₆ at room temperature affords the dark red cluster $\operatorname{Ru}_5C(CO)_{14}\operatorname{Au}_2(\operatorname{Ph}_2\operatorname{PCH}_2\operatorname{CH}_2\operatorname{PPh}_2)$ (1), in 80% yield after chromatography on silica. A minor product (ca. 10% yield), found to be $[{Ru_5C(CO)_{14}}_2Au_2(Ph_2PCH_2CH_2PPh_2)]^2 - (2)$, can be isolated as the $[N(PPh_3)_2]^+$ salt. When one half of an equivalent of the digold reagent was used, compound 2 was obtained in higher yield (ca. 60%) and compound 1 was isolated in 30% yield. Both compounds have been spectroscopically characterised. * In order to establish the coordination mode of the golddiphenylphosphine fragment in the cluster 1, its structure has been determined by single crystal X-ray crystallography. ** The molecular structure of 1 is shown in Fig. 1, together with some important bond parameters. The metal core geometry of 1 can be described as a trigonal bipyramid fused with a square based pyramid sharing a common triangular face. The bidentate phosphine ligand bridges the Au-Au vectors, generating a six-membered ring. The Au-Au separation of 2.811(1) Å is similar to the corresponding distances in $Au_2Ru_4(\mu-H)(\mu_3-H)(\mu-Ph_2PCH_2PPh_2)(CO)_{12}$ (2.823(1) Å [2]), $Au_2Ru_4(\mu-H)(\mu_3-H)(\mu-Ph_2AsCH_2 PPh_2(CO)_{12}$, (2.832(4) Å [3]), and $Au_2Ru_4(\mu_3-S)(\mu-1)$ Ph₂PCH₂PPh₂)(CO)₉, (2.802(1) Å [4]). The cluster 1 has three carbonyls bridging three of the basal edges of the square based pyramid, and the remaining eleven are terminally coordinated to the metal core. The Ru_5Au_2 core geometry in 1 contrasts with that found in $Ru_5C(CO)_{14}(AuPEt_3)_2$, in which one gold atom caps

Correspondence to: Professor Lord Lewis.

the base of the square based pyramid and the other gold atom bridges one of the basal edges of the pyramid [5]. However, the orientations of the carbonyl ligands in the two compounds are very similar. The ${}^{31}P{}^{1}H{}$ NMR spectrum for 1, in CD₂Cl₂ at room temperature shows two sharp singlets of equal intensity at δ -78.2 and δ -82.4 (relative to trimethylphosphite) which is consistent with the solid state structure of 1. It has not been possible to obtain crystals of complex 2 suitable for crystallographic analysis, but from the spectroscopic data * the formulation is consistent with the presence of two [Ru₅C(CO)₁₄]²⁻ dianions linked by a [Au₂(Ph₂PCH₂CH₂PPh₂)]²⁺ cation.

The corresponding reaction of $[N(PPh_3)_2][Os_4H_3(CO)_{12}]$ with Au₂(Ph₂PCH₂CH₂PPh₂)Cl₂, in a 3:1 ratio, in the presence of excess TIPF₆, gives after chromatography on silica, the airstable yellow compound $\{Os_4H_3(CO)_{12}\}_2Au_2(Ph_2PCH_2CH_2PPh_2)$ (3) in quantitative yield based on the Au reagent used. Complex 3 has been characterised spectroscopically *, and by a single crystal X-ray study **, which showed that two tetraosmium units are linked together *via* the $[Au_2(Ph_2PCH_2CH_2PPh_2)]^{2+}$ fragment. The molecular

structure of 3 is shown in Fig. 2, together with some selected bond parameters. The molecule lies on a crystallographic centre of symmetry located at the mid-point of the C(1)-C(1g) bond. The structural features of the unique $Os_4H_3(CO)_{12}AuPR_3$ unit in 3 are essentially the same as those reported for $Os_4-H_3(CO)_{12}AuPEt_3$ [6]. The Au-P distance in 3 is not significantly different from the two values (2.280(5) and 2.293(4) Å) for the Au-P distances in 1, although the mode of coordination of the [Au_2(Ph_2PCH_2CH_2-PPh_3)]^{2+} cation is different.

It has been demonstrated that with the careful choice of cluster and stoichiometry, the $[Au_2(Ph_2PCH_2CH_2-PPh_2)]^{2+}$ unit exhibits different bonding modes. Currently we are investigating the chemistry of this cation with high nuclearity systems.

Fig. 1. The molecular structure of $[Ru_5C(CO)_{14}Au_2(Ph_2-PCH_2CH_2PPh_2)]$ (1) showing the atom numbering scheme. Bond lengths: Au(1)-Au(2), 2.811(1); Au(1)-Ru(1), 3.084(2); Au(1)-Ru(2), 3.015(2); Au(1)-Ru(5), 2.722(2); Au(1)-P(1), 2.293(4); Au(2)-Ru(1), 2.796(2); Au(2)-Ru(2), 2.802(2); Au(2)-P(2), 2.280(5); Ru(1)-Ru(2), 3.006(2); Ru(1)-Ru(4), 2.793(2); Ru(1)-Ru(5), 2.900(3); Ru(2)-Ru(3), 2.804(2); Ru(2)-Ru(5), 2.898(2); Ru(3)-Ru(4), 2.796(3); Ru(3)-Ru(5), 2.813(2); Ru(2)-Ru(5), 2.898(2); Ru(1)-C(10), 2.02(2); Ru(2)-C(10), 2.01(2); Ru(3)-C(10), 2.03(2); Ru(4)-C(10), 2.04(2); Ru(2)-C(10), 2.21(2); P(1)-C(1), 1.82(2); P(2)-C(2), 1.81(2); C(1)-Au(1)-Ru(5), 3.601 angles: Ru(1)-Au(1)-Ru(2), 59.1(1); Ru(1)-Au(1)-Ru(5), 59.6(1); Ru(2)-Au(1)-Ru(5), 60.4(1); Au(2)-Au(1)-Ru(5), 50.6(1); Au(1)-Au(2)-Ru(2), 65.0(1); Ru(1)-Au(2)-Ru(2), 65.0(1); Ru(1)-Au(2)-Ru(2), 65.0(1); .

- * Spectroscopic data for 1: IR ν (CO) (CH₂Cl₂): 2065m, 2034vs, 2008vs, 1972m, 1849br, sh cm⁻¹. MS: M⁺ (obs.) m/z 1701 (calc.) 1702. ³¹P{¹H} NMR (CD₂Cl₂): δ -78.2(s, 1P), -82.4 (s, 1P). 2: IR ν (CO) (CH₂Cl₂): 2066m, 2036s, 2017s, 1844br, sh cm⁻¹. MS: M⁺ (obs.) m/z 2610 (calc.) 2611. 3: IR ν (CO) (CH₂Cl₂): 2094m, 2071s, 2033vs, 2004m, 1970m, 1950m, br cm⁻¹. ³¹P {¹H} NMR (CD₂Cl₂): δ -69.3 (s, 2P). ¹H NMR (CD₂Cl₂): δ -20.27 (s, 6H), 2.81 (s, br, 4H), 7.49 (m, 20H).
- ** Crystal data for 1: $C_{41}H_{24}O_{14}P_2Ru_5Au_2$, M = 1701.8, triclinic, space group $P\overline{1}$ (No. 2), a = 10.772(1), b = 14.829(2), c = 16.084(3) \ddot{A} , $\alpha = 102.04(1)$, $\beta = 93.82(1)$, $\gamma = 101.49(1)^\circ$, V = 2446(1) \ddot{A}^3 , Z = 2, $D_c = 2.31$ g cm⁻³, F(000) = 1580, Mo K α radiation, $\lambda =$ 0.71069 Å, μ (Mo K α) = 75.99 cm⁻¹, 4850 observed diffractometer data $[F > 4\sigma(F)]$. Structure solved by direct methods and Fourier difference techniques, refined by full-matrix least-squares analysis (Au, Ru, P, O and some C atoms anisotropic) to R =0.069 and $R_w = 0.086$. Crystal data for 3: $C_{50}H_{30}O_{24}P_2Os_8Au_2$, M = 2992.3, monoclinic, space group $P2_1/n$ (alternative setting $P2_1/c$, No. 14), a = 18.502(5), b = 8.934(1), c = 21.156(5) Å, $\beta = 109.32(1)^{\circ}$, V = 3300(1) Å³, Z = 2, $D_c = 3.010$ g cm⁻³, F(000) = 2636, Mo K α radiation, $\lambda = 0.71069$ Å, μ (Mo K α) = 198.97 cm⁻¹, 3203 observed diffractometer data [$F > 3\sigma(F)$]. Structure solved by direct methods and Fourier difference techniques, refined by full-matrix least-squares analysis (Au, Os, P atoms anisotropic) to R = 0.050 and $R_w = 0.059$. Atomic coordinates, bond lengths and angles, and thermal parameters for both structures have been deposited at the Cambridge Crystallographic Data Centre.

Fig. 2. The molecular structure of $[(H_3O_{4}(CO)_{12})_2Au_2(Ph_2PCH_2CH_2PPh_2)]$ (3) showing the atom numbering scheme. Bond lengths: Au-Os(2), 2.778(2); Au-Os(4), 2.789(2); Os(1)-Os(2), 2.961(1); Os(1)-Os(3), 2.956(1); Os(1)-Os(4), 2.812(2); Os(2)-Os(3), 2.811(2); Os(2)-Os(4), 2.942(1); Os(3)-Os(4), 2.960(2); Au-P(1), 2.288(6); P(1)-C(1), 1.85(2); C(1)-C(1g), 1.56(3) Å. Bond angles: Os(2)-Au-Os(4), 63.8(1); Os(2)-Au-P(1), 143.4(1); Os(4)-Au-P(1), 152.8(1)^{\circ}.

Acknowledgements

We thank the Royal Commission for the Exhibition of 1851 (W.T.W.), the Nehru Trust for Cambridge University, New Delhi, the Cambridge Commonwealth Trust, Cambridge (V.P.S.), the Committee of Vice-Chancellors and Principals (W.T.W. & V.P.S.), SERC (A.J.A.) and Ciba-Geigy (A.J.E.) for financial support.

References

1 C. E. Coffey, J. Lewis and R. S. Nyholm, J. Chem. Soc., (1964) 1741; B. F. G. Johnson, J. Lewis, W. J. H. Nelson, P. R. Raithby and M. D. Vargas, J. Chem. Soc., Chem. Commun., (1983) 608; B. F. G. Johnson, J. Lewis, W. J. H. Nelson, M. D. Vargas, D. Braga, K. Henrick and M. McPartlin, J. Chem. Soc., Dalton Trans., (1986) 975.

- 2 P. A. Bates, S. S. D. Brown, A. J. Dent, M. B. Hursthouse, G. F. M. Kitchen, A. G. Orpen, I. D. Salter and V. Sik, J. Chem. Soc., Chem. Commun., (1986) 600.
- 3 P. A. Bates, S. S. D. Brown, D. B. Dyson, M. B. Hursthouse, R. V. Parish and I. D. Salter, J. Chem. Soc., Dalton Trans., (1988) 1795.
- 4 S. S. D. Brown, S. Hudson, M. McPartlin and I. D. Salter, J. Chem. Soc., Dalton Trans., (1987) 1967.
- 5 A. Cowie, B. F. G. Johnson, J. Lewis and P. R. Raithby, unpublished results.
- 6 B. F. G. Johnson, D. A. Kaner, J. Lewis, P. R. Raithby, M. J. Taylor, J. Chem. Soc., Chem. Commun., (1982) 314.