JOM 23139PC

Preliminary Communication

Synthesis of bridged and linked ruthenium and osmium carbonyl clusters containing a $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{2+}$ unit. The crystal and molecular structures of $\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ and
$\left\{\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right\}_{2} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$

Angelo J. Amoroso, Andrew J. Edwards, Brian F.G. Johnson, Jack Lewis, Muna R. Al-Mandhary, Paul R. Raithby, Vijay P. Saharan and Wing Tak Wong
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (UK)

(Received July 13, 1992)

Abstract

Treatment of $\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Cl}_{2}$ with one equivalent of the $\left[\mathrm{Ru}_{5} \mathrm{O}(\mathrm{CO})_{14}\right]^{2-}$ dianion in the presence of TIPF_{6} gives $\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ (1) in good yield and the $\left[\left(\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}\right\}_{2} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{2-}$ (2) anion in low yield. Complex 2 becomes the major product if 2 equivalents of $\left[\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}\right]^{2-}$ are used. Reaction of $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{\mathrm{Cl}_{2}}\right]$ with 3 equivalents of $\left[\mathrm{H}_{3} \mathrm{Os}_{4}\left(\mathrm{CO}_{12}\right)^{\mathrm{J}}\right.$ - anion in the presence of TlPF ${ }_{6}$ affords $\left\{\mathrm{H}_{3} \mathrm{O}_{4}(\mathrm{CO})_{12}\right\}_{2} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ (3) in reasonable yield. \mathbf{X}-ray diffraction studies of $\mathbf{1}$ and $\mathbf{3}$ show that they contain the $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{2+}$ fragment in different coordination modes.

The use of Group IB metal fragments for the metathetical formation of metal-metal bonds with anionic metal carbonyl clusters is well known [1]. However, the use of bimetallic cationic fragments, containing bidentate phosphine groups, such as $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}{ }^{-}\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right)\right]^{2+}$, has been limited to a few cases in which both Au atoms are bonded to the same ruthenium or osmium cluster anion [2-4]. We decided to expand these studies in order to investigate the possibility of linking

Correspondence to: Professor Lord Lewis.
carbonyl cluster anions with this bidentate cation as a method of generating higher nuclearity cluster complexes, and we now report some preliminary results of these investigations. From the reactions of $\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Cl}_{2}$ with the anions $\left[\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}\right]^{2-}$ and $\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right]^{-}$three complexes exhibiting two different coordination modes of the digold unit have been characterised: (i) a digold-pentaruthenium carbido cluster with a $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}{ }^{-}\right.\right.$ $\mathrm{CH}_{2} \mathrm{PPh}_{2}$) $]^{2+}$ unit bonded to one cluster anion via both Au atoms; (ii) a digold-decaruthenium cluster anion; and (iii) a digold-octaosmium cluster containing two monogold-tetraosmium units linked together via the $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{2+}$ unit.

Treatment of a dichloromethane solution of the salt [$\left.\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left[\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}\right]$ with one equivalent of $\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Cl}_{2}$ in the presence of an excess of TlPF_{6} at room temperature affords the dark red cluster $\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ (1), in 80% yield after chromatography on silica. A minor product (ca. 10% yield), found to be $\left[\left\{\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}\right\}_{2} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{2-}$ (2), can be isolated as the $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$salt. When one half of an equivalent of the digold reagent was used, compound 2 was obtained in higher yield (ca. 60\%) and compound 1 was isolated in 30% yield. Both compounds have been spectroscopically characterised. * In order to establish the coordination mode of the golddiphenylphosphine fragment in the cluster 1, its structure has been determined by single crystal X-ray crystallography. ${ }^{* *}$ The molecular structure of 1 is shown in Fig. 1, together with some important bond parameters. The metal core geometry of 1 can be described as a trigonal bipyramid fused with a square based pyramid sharing a common triangular face. The bidentate phosphine ligand bridges the $\mathrm{Au}-\mathrm{Au}$ vectors, generating a six-membered ring. The $\mathrm{Au}-\mathrm{Au}$ separation of 2.811 (1) \AA is similar to the corresponding distances in $\mathrm{Au}_{2} \mathrm{Ru}_{4}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{H}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{12}$, (2.823(1) A [2]), $\mathrm{Au}_{2} \mathrm{Ru}_{4}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{H}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{AsCH}_{2}-\right.$ $\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{12},\left(2.832(4) \AA\right.$ [3]), and $\mathrm{Au}_{2} \mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{S}\right)(\mu-$ $\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}$, (2.802(1) \AA [4]). The cluster 1 has three carbonyls bridging three of the basal edges of the square based pyramid, and the remaining eleven are terminally coordinated to the metal core. The $\mathrm{Ru}_{5} \mathrm{Au}_{2}$ core geometry in 1 contrasts with that found in $\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}\left(\mathrm{AuPEt}_{3}\right)_{2}$, in which one gold atom caps
the base of the square based pyramid and the other gold atom bridges one of the basal edges of the pyramid [5]. However, the orientations of the carbonyl ligands in the two compounds are very similar. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum for 1 , in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature shows two sharp singlets of equal intensity at $\delta-78.2$ and $\delta-82.4$ (relative to trimethylphosphite) which is consistent with the solid state structure of 1 . It has not been possible to obtain crystals of complex 2 suitable for crystallographic analysis, but from the spectroscopic data ${ }^{*}$ the formulation is consistent with the presence of two $\left[\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}\right]^{2-}$ dianions linked by a $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{2+}$ cation.

The corresponding reaction of $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{HOs}_{4} \mathrm{H}_{3}-\right.$ $\left.(\mathrm{CO})_{12}\right]$ with $\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Cl}_{2}$, in a $3: 1$ ratio, in the presence of excess TIPF $_{6}$, gives after chromatography on silica, the airstable yellow compound $\left\{\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}\right\}_{2} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(3)$ in quantitative yield based on the Au reagent used. Complex 3 has been characterised spectroscopically *, and by a single crystal X-ray study ${ }^{* *}$, which showed that two tetraosmium units are linked together via the $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{2+}$ fragment. The molecular

[^0]structure of 3 is shown in Fig. 2, together with some selected bond parameters. The molecule lies on a crystallographic centre of symmetry located at the mid-point of the $\mathrm{C}(1)-\mathrm{C}(1 \mathrm{~g})$ bond. The structural features of the unique $\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12} \mathrm{AuPR}_{3}$ unit in 3 are essentially the same as those reported for $\mathrm{Os}_{4}{ }^{-}$ $\mathrm{H}_{3}(\mathrm{CO})_{12} \mathrm{AuPEt}_{3}$ [6]. The $\mathrm{Au}-\mathrm{P}$ distance in 3 is not significantly different from the two values (2.280(5) and $2.293(4) \AA$) for the $\mathrm{Au}-\mathrm{P}$ distances in 1 , although the mode of coordination of the $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{PPh}_{3}\right)\right]^{2+}$ cation is different.

It has been demonstrated that with the careful choice of cluster and stoichiometry, the $\left[\mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right)\right]^{2+}$ unit exhibits different bonding modes. Currently we are investigating the chemistry of this cation with high nuclearity systems.

Fig. 1. The molecular structure of $\left[\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{1_{4} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2^{-}}\right.}\right.$ $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$)] (1) showing the atom numbering scheme. Bond lengths: $\mathrm{Au}(1)-\mathrm{Au}(2), 2.811(1) ; \mathrm{Au}(1)-\mathrm{Ru}(1), 3.084(2) ; \mathrm{Au}(1)-\mathrm{Ru}(2)$, 3.015(2); $\mathrm{Au}(1)-\mathrm{Ru}(5), 2.722(2) ; \mathrm{Au}(1)-\mathrm{P}(1), 2.293(4) ; \mathrm{Au}(2)-\mathrm{Ru}(1)$, 2.796(2); $A u(2)-R u(2), 2.802(2) ; A u(2)-P(2), 2.280(5) ; R u(1)-R u(2)$, 3.006(2); $\mathrm{Ru}(1)-\mathrm{Ru}(4), 2.793(2) ; \mathrm{Ru}(1)-\mathrm{Ru}(5), 2.900(3) ; \mathrm{Ru}(2)-\mathrm{Ru}(3)$, 2.804(2); $\mathrm{Ru}(2)-\mathrm{Ru}(5), 2.898(2) ; \mathrm{Ru}(3)-\mathrm{Ru}(4), 2.796$ (3); $\mathrm{Ru}(3)-\mathrm{Ru}(5)$, 2.813(2); $\mathrm{Ru}(4)-\mathrm{Ru}(5), 2.827(2) ; \mathrm{Ru}(1)-\mathrm{C}(10), 2.02(2) ; \mathrm{Ru}(2)-\mathrm{C}(10)$, 2.01(2); Ru(3)-C(10), 2.03(2); Ru(4)-C(10), 2.04(2); Ru(5)-C(10), 2.21(2); $\mathrm{P}(1)-\mathrm{C}(1), 1.82(2) ; \mathrm{P}(2)-\mathrm{C}(2), 1.81(2) ; \mathrm{C}(1)-\mathrm{C}(2), 1.54(3) \AA$. Bond angles: $\mathrm{Ru}(1)-\mathrm{Au}(1)-\mathrm{Ru}(2)$, 59.1(1); $\mathrm{Ru}(1)-\mathrm{Au}(1)-\mathrm{Ru}(5)$, $59.6(1) ; \mathrm{Ru}(2)-\mathrm{Au}(1)-\mathrm{Ru}(5)$, 60.4(1); $\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{Ru}(1), 56.4(1)$; $\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{Ru}(2), 57.4(1) ; \mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{Ru}(5), 106.0(1) ; \mathrm{Au}(1)-$ $\mathrm{Au}(2)-\mathrm{Ru}(1), 66.7(1) ; \mathrm{Au}(1)-\mathrm{Au}(2)-\mathrm{Ru}(2), 65.0(1) ; \mathrm{Ru}(1)-\mathrm{Au}(2)-$ $R u(2), 65.0(1)^{\circ}$.

Fig. 2. The molecular structure of $\left[\left(\mathrm{H}_{3} \mathrm{Os}_{4}(\mathrm{CO})_{12}\right\}_{2} \mathrm{Au}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right](3)$ showing the atom numbering scheme. Bond lengths: $\mathrm{Au}-\mathrm{Os}(2)$, 2.778(2); $\mathrm{Au}-\mathrm{Os}(4), 2.789(2) ; \mathrm{Os}(1)-\mathrm{Os}(2), 2.961(1) ; \mathrm{Os}(1)-\mathrm{Os}(3), 2.956(1) ; \mathrm{Os}(1)-\mathrm{Os}(4), 2.812(2) ; \mathrm{Os}(2)-\mathrm{Os}(3), 2.811(2) ; \mathrm{Os}(2)-\mathrm{Os}(4), 2.942(1) ;$ $\mathrm{Os}(3)-\mathrm{Os}(4), 2.960(2) ; \mathrm{Au}-\mathrm{P}(1), 2.288(6) ; \mathrm{P}(1)-\mathrm{C}(1), 1.85(2) ; \mathrm{C}(1)-\mathrm{C}(1 \mathrm{~g}), 1.56(3) \AA$. Bond angles: $\mathrm{Os}(2)-\mathrm{Au}-\mathrm{Os}(4), 63.8(1) ; \mathrm{Os}(2)-\mathrm{Au}-\mathrm{P}(1)$, 143.4(1); $\mathrm{Os}(4)-\mathrm{Au}-\mathrm{P}(1), 152.8(1)^{\circ}$.

Acknowledgements

We thank the Royal Commission for the Exhibition of 1851 (W.T.W.), the Nehru Trust for Cambridge University, New Delhi, the Cambridge Commonwealth Trust, Cambridge (V.P.S.), the Committee of ViceChancellors and Principals (W.T.W. \& V.P.S.), SERC (A.J.A.) and Ciba-Geigy (A.J.E.) for financial support.

References

1 C. E. Coffey, J. Lewis and R. S. Nyholm, J. Chem. Soc., (1964) 1741; B. F. G. Johnson, J. Lewis, W. J. H. Nelson, P. R. Raithby
and M. D. Vargas, J. Chem. Soc., Chem. Commun., (1983) 608; B. F. G. Johnson, J. Lewis, W. J. H. Nelson, M. D. Vargas, D. Braga, K. Henrick and M. McPartlin, J. Chem. Soc., Dalton Trans., (1986) 975.

2 P. A. Bates, S. S. D. Brown, A. J. Dent, M. B. Hursthouse, G. F. M. Kitchen, A. G. Orpen, I. D. Salter and V. Sik, J. Chem. Soc., Chem. Commun., (1986) 600.
3 P. A. Bates, S. S. D. Brown, D. B. Dyson, M. B. Hursthouse, R. V. Parish and I. D. Salter, J. Chem. Soc., Dalton Trans., (1988) 1795.
4 S. S. D. Brown, S. Hudson, M. McPartlin and I. D. Salter, J. Chem. Soc., Dalton Trans., (1987) 1967.
5 A. Cowie, B. F. G. Johnson, J. Lewis and P. R. Raithby, unpublished results.
6 B. F. G. Johnson, D. A. Kaner, J. Lewis, P. R. Raithby, M. J. Taylor, J. Chem. Soc., Chem. Commun., (1982) 314.

[^0]: * Spectroscopic data for 1: IR $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2065 \mathrm{~m}, 2034 \mathrm{vs}$, 2008vs, $1972 \mathrm{~m}, 1849 \mathrm{br}$, sh cm^{-1}. MS: M^{+}(obs.) $m / z 1701$ (calc.) 1702. ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-78.2(\mathrm{~s}, 1 \mathrm{P}),-82.4$ (s, 1P). 2: IR $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2066 \mathrm{~m}, 2036 \mathrm{~s}$, 2017s, 1844br, sh cm^{-1}. MS: M^{+}(obs.) $m / z 2610$ (calc.) 2611. 3: IR $\nu(\mathrm{CO})$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2094 \mathrm{~m}, 2071 \mathrm{~s}, 2033 \mathrm{vs}, 2004 \mathrm{~m}, 1970 \mathrm{~m}, 1950 \mathrm{~m}, \mathrm{br} \mathrm{cm}^{-1}$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right)$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-69.3(\mathrm{~s}, 2 \mathrm{P})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ $-20.27(\mathrm{~s}, 6 \mathrm{H}), 2.81(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}), 7.49(\mathrm{~m}, 20 \mathrm{H})$.
 ** Crystal data for 1: $\mathrm{C}_{41} \mathrm{H}_{24} \mathrm{O}_{14} \mathrm{P}_{2} \mathrm{Ru}_{5} \mathrm{Au}_{2}, \mathrm{M}=1701.8$, triclinic, space group $P \overline{1}$ (No. 2), $a=10.772(1), b=14.829(2), c=16.084(3)$ \AA Á, $\alpha=102.04(1), \beta=93.82(1), \gamma=101.49(1)^{\circ}, V=2446(1) \AA^{3}$, $Z=2, D_{\mathrm{c}}=2.31 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1580$, Mo $\mathrm{K} \alpha$ radiation, $\lambda=$ $0.71069 \AA, \mu(\mathrm{Mo} \mathrm{K} \alpha)=75.99 \mathrm{~cm}^{-1}, 4850$ observed diffractometer data $[F>4 \sigma(F)]$. Structure solved by direct methods and Fourier difference techniques, refined by full-matrix least-squares analysis ($\mathrm{Au}, \mathrm{Ru}, \mathrm{P}, \mathrm{O}$ and some C atoms anisotropic) to $R=$ 0.069 and $R_{\mathrm{w}}=0.086$. Crystal data for 3: $\mathrm{C}_{50} \mathrm{H}_{30} \mathrm{O}_{24} \mathrm{P}_{2} \mathrm{Os}_{8} \mathrm{Au}_{2}$, $\mathrm{M}=2992.3$, monoclinic, space group $P 2_{1} / n$ (alternative setting $P 2_{1} / c$, No. 14), $a=18.502(5), b=8.934(1), c=21.156(5) \AA$, $\beta=109.32(1)^{\circ}, V=3300(1) \AA^{3}, Z=2, D_{c}=3.010 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)$ $=2636$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu($ Mo K α) $=198.97$ $\mathrm{cm}^{-1}, 3203$ observed diffractometer data $[F>3 \sigma(F)]$. Structure solved by direct methods and Fourier difference techniques, refined by full-matrix least-squares analysis ($\mathrm{Au}, \mathrm{Os}, \mathrm{P}$ atoms anisotropic) to $R=0.050$ and $R_{\mathrm{w}}=0.059$. Atomic coordinates, bond lengths and angles, and thermal parameters for both structures have been deposited at the Cambridge Crystallographic Data Centre.

